If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4u^2)+28u=0
a = 4; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·4·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*4}=\frac{-56}{8} =-7 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*4}=\frac{0}{8} =0 $
| 7+4x=-13* | | 16a-3/4(20a-16)=-12 | | 15+12n=20n-9 | | w/5=-13 | | -6(2x-30)=-2(8x-1) | | 2b÷5=21 | | (18-t)/7+49=51 | | 2x+2=4x^2 | | -5m=2m+9 | | -18-2m=-m | | -10p+8=7p=12 | | 6(2+2x)=24 | | 15-9t=-10t | | 2w+w=-3 | | 3^4x+5=81^3/4 | | w+-4=15 | | 9v-7+2(2v+4)=-3(v+1) | | 180=84-16t^2 | | -3x-1(-7x+14)=-2 | | 15/7=12/k | | -16v+15v=-7 | | 4(-7-x)=-56 | | 4c=20-6c | | 17w+6w-18w=5 | | (2)1/2x=(22)1/2 | | -8=x+(-3) | | 12+(x-7)=4+(x+3) | | d+7d=8 | | y/126=21/54 | | 7x+9=7x+2-9 | | (x+13)^2=64 | | y/2-4=-2 |